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A RESOLUTION OF BERTRAND'S PARADOX* 

LOUIS MARINOFFtt 

Department of Philosophy 
University of British Columbia 

Bertrand's random-chord paradox purports to illustrate the inconsistency of 
the principle of indifference when applied to problems in which the number of 
possible cases is infinite. This paper shows that Bertrand's original problem is 
vaguely posed, but demonstrates that clearly stated variations lead to different, 
but theoretically and empirically self-consistent solutions. The resolution of the 
paradox lies in appreciating how different geometric entities, represented by uni- 
formly distributed random variables, give rise to respectively different nonuni- 
form distributions of random chords, and hence to different probabilities. The 
principle of indifference appears consistently applicable to infinite sets provided 
that problems can be formulated unambiguously. 

1. Introduction. 

In the theory of geometrical probabilities the random elements are 
not quantities but geometrical objects such as points, lines and ro- 
tations. Since the ascription of a measure to such elements is not quite 
an obvious procedure, a number of "paradoxes" can be produced by 
failure to distinguish the reference set. (Kendall and Moran 1963, 9) 

In 1889, J. Bertrand published a collection of paradoxes, the most cel- 
ebrated of which is his "random-chord" problem. This particular prob- 
lem, often labeled simply "Bertrand's Paradox" (e.g., Uspensky 1937, 
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251; Lucas 1970, 117; Weatherford 1982, 56) has beguiled mathemati- 
cians and philosophers since its inception. It has spawned a literature that 
spans a range of partly articulated insights, and fully articulated fallacies. 
This paper shows that the putative paradox can be unequivocally re- 
solved. 

The problem arises from Bertrand's (1889) three answers to the fol- 
lowing question, which we label Q, "A chord is drawn randomly in a 
circle. What is the probability that it is shorter than the side of the in- 
scribed equilateral triangle?" (pp. 4-5; emphasis in original; translation 
mine). Bertrand formulated his solutions in terms of the probability that 
the random chord is longer-as opposed to shorter-than the side of the 
inscribed equilateral triangle. 

Let us call Bertrand's first solution B,. Consider all chords generated 
from a vertex of the inscribed equilateral triangle. Those chords lying 
within the arc subtended by the angle at that vertex satisfy Bertrand's 
condition. That angle is rr/3 radians. Since chords from the vertex range 
through an angular interval of rT radians, the probability in question is 
1/3. 

Let us call Bertrand's second solution B2. Consider a diameter that is 
the right bisector of one side of the triangle. The intersection of the chords 
is a point of quadrisection of the diameter. Now consider all chords per- 
pendicular to that diameter. Those lying within half a radius of either side 
of the center satisfy Bertrand's condition. Since this linear interval is just 
one-half the diameter, the probability in question is 1/2. 

Let us call Bertrand's third solution B3. Consider a circle inscribed in 
the equilateral triangle. Any chord (except a diameter) is uniquely iden- 
tified by its midpoint. Any chord whose midpoint falls either on or within 
the inscribed circle satisfies Bertrand's condition. The radius of the in- 
scribed circle is half that of the large circle. The probability in question 
is just the ratio of their areas, which is 1/4. 

Bertrand reasoned, "Among these three answers, which one is proper? 
None of the three is incorrect, none is correct, the question is ill-posed" 
(ibid., 5; translation mine). 

According to Jaynes (1973), this paradox "has been cited to generations 
of students to demonstrate that Laplace's 'principle of indifference' con- 
tains logical inconsistencies" (p. 478). Jaynes's claim begs two prelim- 
inary clarifications. The first pertains to the origin and appellation of said 
principle; the second, to the original intent and relevance of Bertrand's 
paradoxes themselves. 

Jeffreys ([1948] 1961, 33-34), among others, refers to the Laplacean 
"Principle of Insufficient Reason" (equivalently, "the equal distribution 
of ignorance"), with regard to the following proposition, set forth by Laplace 
both in the introduction and at the beginning of Book Two of his Theorie 
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Analytique des Probabilitis ([1820] 1886), "We have seen in the Intro- 
duction that the probability of an event is the ratio of the number of fa- 
vourable cases to the number of all possible cases, when nothing engen- 
ders a belief that any one of these cases should occur rather than any 
other, which renders them, for us, equally possible" (p. 181; translation 
mine), to which Laplace appends, "The accurate assessment of these var- 
ious cases is one of the most delicate points in the analysis of chance" 
(ibid.; translation mine). 

Hacking (1975, 122-132) relates that both Laplace and Jacques Bernoulli 
owe a debt to Leibniz, who advanced a similar definition of probability 
in 1678. Laplace, in the above-mentioned introduction (itself reprinted 
and celebrated as a classic essay), refers to Leibniz and his well-known 
principle of sufficient reason at the very outset. Hacking further points 
out that while von Kries aptly introduced the term "Principle of Insuf- 
ficient Reason" in 1871, Keynes (1921, 42) coined the phrase "Principle 
of Indifference". 

Both principles are frequently but inexactly attributed to Laplace (e.g., 
Jeffreys [1948] 1961, 34; Carnap [1950] 1962, 341; and Jaynes 1973, 
478, respectively). For our present purposes, these principles are syn- 
onymous. Although their conceptual origin predates Laplace and their 

appellations postdate him, their meaning bears directly upon him, for he 
is rightly regarded as the outstanding formulator of and contributor to the 
classical theory of probability. 

This leads to the second preliminary issue. Bertrand belonged to the 
informal school of French finitism (whose later exponents included Borel 
and Poincare). Bertrand (1889, 2) rehearsed Laplace's definition of prob- 
ability verbatim, but sought to restrict its application to problems whose 
number of possible cases is finite, "Another remark is necessary: infinity 
is not a number; one should not, without explanation, introduce it into 
arguments. The illusory precision of words can give rise to contradic- 
tions. To choose randomly, among an infinite number of possible cases, 
is not a sufficient specification" (p. 4; translation mine). Bertrand's "par- 
adoxes" were set down to illustrate the contradictions that ensue from 
inadequate specification of various infinities of choice. 

On the whole, Bertrand's criticism appears to be leveled against the 
subject of "local probability" (that is, geometrical probability). Cajori 
(1913) called this subject "the only noteworthy recent addition to prob- 
ability" (p. 340). The first recorded question on local probability was 
Buffon's needle problem, described in his 1777 treatise "Essai d'Arithme- 
tique morale", solved by both Buffon and Laplace (e.g., see Bulsenko 
et al. 1966, 4-5); the second was Sylvester's four-point problem (see 
Crofton 1875). Subsequently, a recognizable body of inquiry emerged, 
shaped largely by the work of Crofton. The geometric entities typically 
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randomized, such as points on a line, lines in a plane, or angles in a 
rotational interval, are not discrete but continuous, and thus the reference 
sets (i.e., the number of possible outcomes) associated with them are of 
infinite, not finite, cardinality. 

With respect to the quotation from Kendall and Moran at the beginning 
of this paper, it appears that Bertrand deliberately failed to distinguish 
the reference sets in his formulation of the random-chord problem, the 
better to advance his argument against applying Laplacean probabilism 
to infinities of possible outcomes. This in turn begs another question: If 
the reference sets could be properly distinguished, would the paradox then 
be resolved? In other words, can Bertrand's problem become "well posed"? 
This paper replies affirmatively, but plurally. 

2. Bertrand's Several Questions. Our first task consists in clearly dis- 
tinguishing three cases, which Bertrand's vague question Q (perhaps de- 
liberately) conflates. A unit circle centered at the origin of a Cartesian 
plane defines two regions separated by a boundary. The curve x2 + y2 = 

1 constitutes the boundary, which separates the region not enclosed by 
the curve (x2 + y2 > 1) from the region enclosed by the curve (x2 + y2 
< 1). When generating random chords, one clearly faces methodological 
alternatives since, to begin with, the randomizing procedure can take place 
in either of these two regions, or on their boundary. Thus Bertrand's three 
answers can be construed initially as replies to three different questions: 
What is the probability that a chord drawn randomly in a circle is longer 
than the side of the inscribed equilateral triangle, given that the random 
chord is generated 

(Qj) by a procedure on the circumference of the circle? 

(Q2) by a procedure outside the circle? 

(Q3) by a procedure inside the circle? 

As even a cursory glance through the literature on Bertrand's problem 
reveals, these three questions have suffered a singular fate; namely, there 
has been little recognition of the distinction between them. Appeals to 
reason (i.e., to clear and unambiguous treatment of the problem) have 
been made by philosophers and mathematicians alike, but to little avail. 
The three questions have remained conflated. For example, van Fraassen 
(1989) makes one such sensible appeal: 

Most writers commenting on Bertrand have described the problems 
set by his paradoxical examples as not well posed. In such a case, 
the problem as initially stated is really not one problem but many. 
To solve it we must be told what is random; which means, which 
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events are equiprobable; which means, which parameter should be 
assumed to be uniformly distributed. (P. 305) 

By implementing van Fraassen's recommended method (and not the tra- 
ditional departure from it), we will be able to tell precisely what is ran- 
dom, what is equiprobable, and what is uniformly distributed in each of 
Ql, Q2 and Q3. 

One further clarification is necessary. We would like to distinguish 
between the "answer" to a question, and the "solution" to a problem. By 
"answer", we mean simply "a reply", consisting (in this probabilistic 
context) of a number. By "solution", we mean "the argument or deri- 
vation that gives rise to the answer". Thus a "question" and a "problem" 
are viewed as a single interrogative that may be either answered or solved. 
This paper associates solutions with problems, not merely answers with 
questions. Since a given number n may be the correct answer to a plu- 
rality of questions, n bears little relevance to our understanding of a prob- 
lem when dissociated from the particular solution that gives rise to it. For 
example, we will show that although Bertrand's respective answers are 
correct when applied to Q1, Q2 and Q3, two of his three solutions are 
inappropriate in this context; that is, they partially solve a problem that 
he never posed. That problem, labeled Q4 and solved herein, is as fol- 
lows: With what probability does a random chord intersecting a fixed 
diameter of a circle have length equal to or greater than the side of the 
inscribed equilateral triangle? 

3. A Solution to Q'. Bertrand's solution B1 solves the following prob- 
lem: Given an equilateral triangle inscribed in a circle, with what prob- 
ability does a point "tossed" randomly onto the circumference lie on the 
arc between any two given vertices of the triangle? If the vertices of the 
triangle are a, b and c, then any point tossed randomly onto the circum- 
ference lies between a and b, or between b and c, or between c and a, 
with a probability equal to the ratio of the respective arc length (ab, bc 
or ca) to the arc length of the circumference itself. This ratio is just 1/3. 
Note that this problem is solved by the theory of a one-dimensional, 
uniformly-distributed random variable (e.g., see Rozanov 1969, 40-41). 

Solution B1 attempts to apply this one-dimensional solution to a two- 
dimensional problem by fixing one endpoint of the chord at any vertex 
of the triangle (say, vertex a), and allowing the other endpoint of the 
chord to represent the random variable (the point tossed onto the circum- 
ference). Now Bl implicitly requires that we rotate our fixed point (vertex 
a) around the entire circumference (through an angle of 2i) in order to 
accommodate all possible chords of the circle. Then again, by circular 
symmetry, argument B1 remains invariant no matter where we fix vertex 
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a. So on the one hand, we require a rotational coordinate in order to 
specify all possible chords; while on the other, this rotational coordinate 
never figures in the calculation of the probability itself. Thus Bl's appeal 
to circular symmetry creates the illusion that Q1 is being solved in two 
dimensions, whereas Bl's actual probability calculus unfolds strictly in 
one dimension (that of a single random variable). In other words, B1 solves 
the corresponding one-dimensional problem (above). 

Question Q1, however, is a two-dimensional problem, and must be solved 
in a commensurate space. The following solution to Q1 is by topologist 
R. Douglas (private communication). Every chord of a circle is uniquely 
defined by one pair of points on its circumference; conversely, every pair 
of points on its circumference uniquely defines one chord. Thus an iso- 
morphism obtains between chords and circumferential pairs of points. 

(2t /3, 2n) (4 / 3, 2rt) (23, 2n) 

(2n , 4 / 3) 

(2X , 23/3) 

(2t, 0) 

Bertrand's condition not fulfilled 

Bertrand's condition fulfilled 

Figure 3.1. Solution to Q1 (Douglas's Torus). 

(0, 2n) 

(0, 4 / 3) 

(0, 2 r/3) 

(0, 0) 

E 
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Since each random point on the circumference lies in the angular interval 
[0, 27r], the probability density is 1/(47r2). Euclidean methods show that 
Bertrand's condition is satisfied when the two points subtend an angle at 
the center that is greater than or equal to 27r/3, and less than or equal to 
47r/3. We can choose ordered pairs of points (x,y) randomly and simul- 
taneously by throwing darts at a Cartesian square of length 27r and height 
2,r (see figure 3.1). The shaded areas of the square are those within which 
Bertrand's condition is satisfied; moreover, the total shaded area is just 
one-third of the whole area. Given a highly unskilled dart thrower, who 
ensures a uniform distribution of darts on the square, then the probability 
in question is 1/3. As Douglas indicates, the selection of a random or- 
dered pair (x,y) on this square is topologically equivalent to the selection 
of a random point on the surface of a torus (formed by joining opposite 
sides of the square). 

Note that although Bertrand's and Douglas's answers to Q1 are equiv- 
alent, their solutions are not. Bertrand's B, fixes one endpoint of a chord, 
then selects the other endpoint randomly, in one dimension. Douglas's 
solution selects ordered pairs of endpoints simultaneously, randomly, and 
commensurately, in two dimensions. 

4. A Solution to Q2. Similarly, Bertrand's proposed solution B2 solves 
the following problem: Given a linear interval [-r,r], what is the prob- 
ability that a point tossed randomly onto the interval falls within the sub- 
interval [-r/2,r/2]? The probability is once again the ratio of the lengths 
of the intervals in question, in this case just 1/2. Again, B2 implicitly 
requires that we rotate our arbitrarily chosen diameter through an angle, 
this time of Xr radians, in order to accommodate all possible chords of 
the circle. But neither does this rotational coordinate figure in the cal- 
culation of the actual probability; it is once again dismissed by reason of 
circular symmetry. So B2 also creates the illusion of a two-dimensional 
solution, whereas in fact it solves the one-dimensional problem above. 

Jaynes (1973) and van Fraassen (1989, 305-317) set about solving Q2. 
However, both Jaynes and van Fraassen erroneously claim that they are 
answering Bertrand's original question Q, which they both mistranslate 
as Q2. 

Jaynes and a colleague conducted an experiment designed to answer 
Q2- One of the experimenters stood erect and tossed broom straws onto 
a five-inch-diameter circle drawn on the floor. Jaynes (1973) reports that 
128 "successful" tosses of a broom straw (i.e., tosses for which the straw 
intersected the circle, nonintersecting straws being null trials) met Bertrand's 
condition with a statistical frequency, or empirical probability, of 1/2. 
So one-half of the chords formed by straws which intersected the circle 
had length equal to or greater than \/3r. Moreover, a chi-squared test 
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performed on the range of chord lengths grouped into ten categories yielded, 
in Jaynes's words, "an embarrassingly low value of chi-squared" (ibid., 
487). 

It is a novel but ironic disclosure that the "embarrassingly low value" 
(ibid.) failed to arouse Jaynes's suspicions-not as to the reliability of 
his data, but as to which question his data was actually answering.1 Ber- 
trand asked Q; Jaynes specifically answered Q2, heedless of the distinc- 
tion. The irony is that while Jaynes's experiment furnished precise em- 
pirical corroboration of the theoretical solution to Q2 (which we will shortly 
derive), Jaynes himself misapplied the data to support B2. We have seen 
that B2 correctly answers, but does not generally solve, Q2. We will later 
see that while B2 actually solves one very special case of Q2, it most 
generally provides a partial solution to Q4. 

Jaynes reports the results of his experiment near the end of his paper, 
following a lengthy appeal to the virtues of invariant probability density. 
Poincare proved that the sole probability density which remains invariant 
under the group of rotations and translations in the Euclidean plane is that 
density which corresponds to Bertrand's solution B2 (see Kendall and Moran 
1963, 16). It also happens that the correct answer to Q2, which Jaynes 
found out by experiment, has the same numerical value as the answer 
generated by solution B2. So Jaynes understandably but mistakenly con- 
cluded that he had empirically corroborated the theoretical construct B2, 
whereas in fact he had corroborated a theoretical construct hitherto un- 
constructed. We now derive the classical answer to Q2, which Jaynes's 
empirical data so richly corroborates. 

Consider a circle of radius r lying in the plane. Let any diameter be 
produced in one direction. Now consider any randomly drawn line in the 
plane, which intersects the produced diameter at point p, some distance 
h from the center. Now draw the two tangents, t and t', from p. Ob- 
viously, any straight line through p that lies within the acute angle tt' 
intersects the circle (see figure 4.1). Call this acute angle 3. Now consider 
the two straight lines through p, labeled c and c', which just fulfill Bertrand's 
condition. That is, the segments of c and c' that lie within the circle have 
length \/3r. Then, as figure 4.1 illustrates, c and c' define a critical acute 
angle a. Any line through p that lies within a clearly fulfills Bertrand's 
condition in that its segment within the circle has length equal to or greater 
than V3r. 

Now we invoke the principle of indifference which, via the theory of 
uniformly distributed random variables, asserts the following: Given any 
random line through p lying within angle P3, the probability that it lies 
within angle a is just a/t3. In other words, the probability Pa = a/f3. 

'The lower the chi-squared value (for a given number of degrees of freedom), the less 
suspect is the hypothesis under consideration. 
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p 

Figure 4.1. Solution to Q2 (Classical Broom Straw Theory). 

As figure 4.1 illustrates, sin(f3/2) = r/h; 3 = 2arcsin(r/h). Similarly, 
sin(a/2) = (r/2h); a = 2arcsin(r/2h). Thus 

Pa = a/l3 = [arcsin(r/2h)]/[arcsin(r/h)] (where h - r). 

Since the circle lies on an unbounded Euclidean plane, the value of h 
itself is unbounded. So it would be useful to know whether the expression 
Pa approaches some limit as h increases without bound. Applying 
L'Hospital's Rule, we find 

lim(h,) P, = lim(ho) (da/dh)/(d,f/dh) = 1/2. 

Thus, according to classical probability theory, the answer to question 
Q2 is 1/2. This result was corroborated, albeit before the fact, by Jaynes's 
experiment. I also performed the experiment, repeatedly tossing a whit- 
tled drinking straw onto a four-inch diameter circle drawn upon the floor. 
After 100 successful trials, I found that forty-nine of one hundred chords 
satisfied Bertrand's condition. 

(A word might be said about "successful" versus "unsuccessful" trials. 
The set L of straight lines in the plane through a fixed point p at a distance 
h from the circle's center has cardinality c, the power of the continuum. 
The subset L' of L, containing lines that intersect the circle in two points 
[thus defining chords] also has cardinality c, as does the subset L" of L', 
whose members are just those lines defining chords that satisfy Bertrand's 
condition. Members of L are randomly distributed in the angular interval 
[0,27r]; of L', in [-3/2,81/2]; of L", in [-a/2,a/2]. A uniform distri- 
bution on the interval [0,2rr] entails a uniform distribution on any sub- 
intervals, i.e., on [-13/2,13/2] and [-a/2,a/2]. In practice, this allows 
the experimenter to ignore unsuccessful trials, i.e., to discount straws that 
fail to intersect the circle in two points, without prejudicing the statistics 
on successful trials.) 
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0.50 . .. 

0.45 -.-./ - --- - 

P, = [arcsin(r/2h)]/[arcsin(r/h)] 

0.40 

0 .3 5 -....................................................................................................................................................................... 

0.350 

0.30 1 1 l I j I I 
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 

distance from center (in radii) 

Figure 4.2. Limit of P, as Length of Broom Straw Increases Without Bound. 

The theoretical result that we have just derived also accounts nicely for 
Jaynes's "embarrassingly low" chi-squared value for his data. We have 
shown that P, approaches a limit of 1/2 as h increases without bound. 
Significantly, we can also show that P, approaches this asymptote very 
rapidly indeed; thus, h need not be very large compared with r in order 
that P, get close to 1/2. Figure 4.2 graphs values of Pa as a continuous 
function of h. As h becomes just one order of magnitude larger than r, 
P, rapidly approaches 1/2. Recall that this problem is posed on the un- 
bounded plane where h may become as large as we please. Empirical 
data draw ever-closer to the limiting frequency of 1/2 as experimental 
straws become longer (compared with the radius of the circle). 

Note that at the circumference, when h = r, Pa = 2arcsin(1/2)/2arcsin(l) 
=1/3. Thus Pa is consistent with the solution to Q1. 

We must now quell a potential objection to this treatment of question 
Q2. To raise and address this objection most clearly, let us reconfigure 
the problem in Cartesian coordinates. Let the circle of radius r be centered 
at the origin. All random lines on this plane are uniquely and completely 
defined either by the equation y = Itx + h, where L is the slope and h 
is the y-intercept, or where the slope is undefined (i.e., the line is parallel 
to the ordinate) by the equation x = k, where k is any real constant. The 
previous argument holds, and P, is still given by a/,3, which asymptot- 
ically approaches 1/2. 

The objection is that suppose a random line has a y-intercept such that 
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-r <y < r. In other words, suppose the random line intersects the di- 
ameter itself, and not the production of the diameter? Then h < r, so the 
expression for Pa is undefined. 

The first response to the objection is that a random straight line on this 

plane, if its slope is other than undefined, has some y-intercept that lies 
in the open interval (-cc,+?o). The probability that the y-intercept falls 
within the open subinterval (-r,r) is lim(h_) 2r/h, or zero. Hence the 
probability that the y-intercept falls on or outside the circle is unity. And 
the probability Pa for these y-intercepts rapidly approaches 1/2, as we 
have seen. 

This first response, however, readily fails. For now consider a random 
straight line on the unbounded plane, with any y-intercept |hl > r. If we 
now ask with what probability the line intersects a circle of radius r (this 
time along the x-axis) then, ceteris paribus, the same argument applies. 
The probability is lim(h_) 2r/h, or zero. But in that case, the probability 
Pa is indeterminate. 

In order to circumvent indeterminacy, one allows the plane to be large, 
but demands that it be bounded. Then the limit of h is finite, and the 
probability Pa approaches 1/2. But then the objection has not been an- 
swered, for Pa is undefined if h falls within the circle. On a bounded 

plane, there is a finite probability that h will do just that. 
The second (and effective) response to the objection is to let the random 

line intersect the diameter of the circle with slope pL, where A is other 
than undefined. Now we are obliged to answer the question, "With what 

probability does the chord formed by this line meet Bertrand's condi- 
tion?", without recourse to P,. 

Consider the set of all random lines that intersect the diameter with 
slope /. Now construct another diameter, with slope --1. This new 
diameter is perpendicular to the given set of random lines. It follows that 
any chord formed from an element of this set meets Bertrand's condition 
with probability 1/2. Furthermore, the same argument applies to the set 
of random lines of undefined slope with respect to which the perpendic- 
ular diameter is simply the abscissa. The objection is thereby answered, 
and the answer is consistent with Pa. 

It follows that B2 can be viewed as the solution to a very special (and 
extremely improbable) case of Q2 in which all random lines intersecting 
the circle are perpendicular to a fixed diameter. We will see that B2 is 
more generally appreciable as a partial solution to Q4. Meanwhile, the 
most general solution to Q2 is that derived above. 

5. A Solution to Q3. Bertrand's B3 answers the question, "Given a circle 
of radius r and a concentric circle of radius r/2, with what probability 
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does a point tossed randomly into the larger circle fall on or within the 
smaller one?" 

Every point in either circle is uniquely specifiable by an ordered pair 
of coordinates, that is, (x,y) in the Cartesian system, or (R,O) in the polar 
system. Moreover, every chord of the large circle (diameters excepted) 
is uniquely defined by its midpoint. Conversely, every point in the large 
circle (center excepted) uniquely defines one chord. (There is a singu- 
larity at the center of the circle. Jaynes 1973, 485, tries unsuccessfully 
to "explain" it away. See f.n. 2.) That is, with every chord we uniquely 
associate one point; and with every point, we uniquely associate one chord. 
Thus (except for the singularity at the center) points and chords stand in 
an isomorphic relation.2 

It is easy to show that any chord whose midpoint lies on or within the 
small circle has length equal to or greater than \/r. Owing to the iso- 
morphism between points and chords, Q3 is solved by B3. The theory of 
uniformly distributed continuous random variables provides a consistent 
method for deriving B3. In the polar coordinate system, the probability 
density is 7r-'r-2. Bertrand's condition is met when R < r/2. Therefore, 
the probability P(R, ) of meeting Bertrand's condition is just 

r/2 o27 

P(R,e) = 1/wr2 RdRd = 1/4. 

This result can be corroborated empirically. Suppose a dart board is 
constructed of the two concentric circles, and that our highly unskilled 
dart thrower tosses a large number of darts at it. Again, a uniform dis- 
tribution of darts occurs. Of all darts which strike anywhere within the 
large circle (naturally, an unskilled dart thrower will also be expected to 
miss the target a fair number of times), that fraction which strikes within 
the small circle will approach one-fourth, statistically, as the number of 
throws increases. Recall, with every point struck by a dart we can uniquely 
associate the midpoint of one chord, and therefore the chord itself. Hence, 
Bertrand's condition in Q3 is met with statistical frequency 1/4. 

6. A Solution to Q4. We would like to show that B1 and B2 are not only 
discrete solutions to separate problems of a one-dimensional random vari- 
able; they are also endpoints of a continuous curve of solutions to Q4: 
With what probability does a random chord intersecting a fixed diameter 
of a circle meet Bertrand's condition? 

2To avoid the singularity at the center, and thus to preserve the isomorphism, consider 
a concentric circle of infinitesimal radius p. Since the isomorphism between points and 
chords holds everywhere except at the center, we exclude the area in the neighborhood of 
the center from the probability calculation. Then the probability is lim,0) [,r(r/2)2 - Trp2]/ 
[rrr2 - Trp2] = 1/4. 
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Let a circle of radius r be described in Cartesian coordinates, centered 
at the origin. Its equation is x2 + y2 = r2. Consider any chord of the circle 
that intersects the vertical diameter (or y-axis) at +h units from the center 
(-r - h - r) at any angle a (0 - a < 7r) with the horizontal. The chord 
touches the circumference at two points: (xi,yl) and (x2,Y2). 

To express these points in terms of h and a, one solves the system of 
simultaneous equations of a line of slope tana and y-intercept h (i.e., y 
= x tana + h), intersecting a circle of radius r. This yields the following 
equations: 

x = (-h tana ? V/r2sec2a - h2)/sec2a. 

y = (h + tana /r2sec2a - 
h2)/sec2a. 

Now the length of the chord L can be expressed in terms of h and a: 

L = /(x - x2)2 + (YI - y2)2 = 2/r2 - h2 cos2a. 

Bertrand's condition requires that L - Vir, which simplifies to 

cosa < Ir/2hl. (1) 

In other words, if inequality (1) is satisfied by a particular (h,a), then 
the chord specified by that (h,a) will indeed have length greater than the 
side of the inscribed equilateral triangle. 

From inequality (1) we can derive a probabilistic expression Ph that 
represents the angular probability with which, for a given h, a chord pass- 
ing through h meets Bertrand's condition. That is, we first select some 
h, and then rotate the intersecting chord through an angular interval of rT 

(rotation through 27r would duplicate each chord). We then ask, for a 
given h, what angular proportion of these chords has length greater than 
or equal to /3r. Given the principle of indifference (and assuming a 
uniform distribution of random angles), the desired proportion is the ratio 
of the angular subinterval that satisfies inequality (1) to the entire interval 
[0, r]. 

That is, 

Ph 
= 

(amax- Oamin) / 7 

Ph = [arccos(-r/2h) - arccos(r/2h)]/iT. 

Now let us evaluate some specific cases. Suppose we choose h = r. 
Then 

Ph = [arccos(-1/2) - arccos (1/2)]/7r. 

Ph = 1/3. 

13 
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The angular probability at the circumference corresponds to Bertrand's 
B . Now let h = r/2. 

Ph = [arccos(- 1) - arccos (1)]/ r. 

Ph= 1. 

In this case, the angular probability is unity. In other words, when a chord 
intersecting r/2 is rotated through ir radians, all resultant chords meet 
Bertrand's condition. 

Now consider Bertrand's solution B2. Rather than fixing a distance h 
from the center (as does B1, where h = r), solution B2 fixes a value of 
a = 0, for all h. Applying this value to inequality (1), we find 

cos(O) < \r/2hl 

or 

-r/2 < h ' r/2. 

This reconfirms, by analytical geometry, a Euclidean result of which we 
are already aware; namely, that when chords are drawn perpendicular to 
a diameter, those lying in the above subinterval of the diameter meet 
Bertrand's condition. 

In general, then, 

l, Ihl -< r/2 
Ph = 

(1/7Tr)[arccos(-r/2h) - arccos(r/2h)], r/2 < Ihl- r. 

Taking the unit circle for convenience, figure 6.1 illustrates the shape 
of this probability function. The average value of Ph (call it P) is the area 
under the curve. Thus P is the sum of the two areas Al and A2. By in- 
spection, Al = 1/2, while A2 is found by integration: 

A2 = 1/7r [arccos(-1/2h) - arccos(1/2h)]dh = 1/4. 

So the average probability is 3/4. This theoretical result can be cor- 
roborated empirically by the Monte Carlo method. Selecting values of h 
at random, ten thousand random computer trials yield an average prob- 
ability of 0.7515, a close approximation indeed. 

Having derived a general probability function that solves Q4, we can 
also show that the set of chords specified by Ph is not isomorphic with 
the set of chords in the circle. The probability function is clearly iso- 
morphic with respect to Q4: With each random chord that intersects a 
fixed diameter of a circle we associate exactly one ordered pair (h,a); 
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probability 
1.0 - .- 

0 .8 . .................................................................................. ............ ......................................................... 

Al = 1/2 A = 1/4 
0 .2 . ................................................................................. ................................ .................................................... 

0.20- 

0.0 1 I 1 I I t 
I i 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

distance from center of unit circle 

p- 

Figure 6.1. Continuum of Solutions to Q4: Ph = [arccos(-r/2h) - arccos(r/2h)]/-r. 

and conversely, with each ordered pair (h,a) we associate exactly one 
chord that intersects a fixed diameter of a circle. 

To show that Ph cannot embody both uniqueness and completeness when 
applied to Q1 or Q2, we distinguish three cases of Ph and show that, in 
each case, Ph either fails to specify a random chord uniquely, or if it 
specifies a random chord uniquely, then it fails to specify every random 
chord. 

Case (1) involves the endpoint of the angular probability at which h = 
r. Let the inscribed equilateral triangle have apex a, and let all possible 
chords be drawn from apex a. The circle is now densely packed with 
chords, each of which is uniquely defined by some (r,a). But we can 
readily find other chords that are not yet defined in this coordinate sys- 
tem. Figure 6.2a illustrates two such chords, c and c'. In order to define 
chord c in this system, we are obliged to admit another coordinate. Call 
it 8, where 8 is an angle of rotation. We rotate the endpoint p of chord 
c through an angle 3 so that p coincides with vertex a. Now chord c is 
defined by the coordinates (r,a,,8). Thus it is specified within the distri- 
bution Ph, and meets Bertrand's condition with probability 1/3 in this 
case. 

Note that while the rotational coordinate is necessary in order to define 
the chord c, this coordinate has no effect on the probability distribution 
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a a p 
a 

p' 

(a) (b) (c) 

Figure 6.2. Nonisomorphism of P, with Q1 and Q2. 

itself owing to circular symmetry. This rotational coordinate, which must 
make one complete revolution (through 271 radians) in order to specify 
all possible chords, is introduced implicitly in Bertrand's solution Bl. 

Refer again to figure 6.2a. Suppose we wish to define the chord c'. 
We similarly rotate the endpoint p' of chord c' through an angle 13' so 
that p' coincides with apex a. Now this chord is uniquely defined by the 
coordinates (r,a',13 + ,3'). Thus it too is specified within the distribution 
Ph, and also meets Bertrand's condition with probability 1/3 in this case. 
However, look again at chord c, whose other endpoint p' now coincides 
with apex a. Chord c is now defined by the coordinates (r,a",f3 + 13'). 

Chord c was previously defined by the coordinates (r,a,3). Thus, chord 
c is not uniquely defined. We incur both definitions of chord c in order 
to accommodate chord c' in P. Hence, if we demand that all possible 
chords be specifiable within Ph, then Ph lacks the property of uniqueness. 
If we relax this demand, then Ph maps one-to-one, but not onto the space. 
If we enforce it, then Ph maps onto the space, but one-to-two. Thus, Ph 

must lack either uniqueness or completeness. 
Case (2) involves the angular probability generated over the domain of 

h inside the circle, that is, in the region -r < h < r. Now the circle is 
even more densely packed with chords, each of which is uniquely defined 

by some (h,a). We can readily find chords c and c', which are not defined 

by any (h,a). Again, we introduce a rotational coordinate and rotate c 

through an angle 3 such that c is now defined by (r,a,83). Similarly, we 
rotate chord c' through 3' such that c' is defined by (r,a',,3'). 

However, consider the path of chord c as it rotates through angle P' 
(see figure 6.2b). When the endpoint of the chord coincides with the 
vertical diameter, Ph specifies this chord as (r,ao,,30). At the next rota- 
tional increment, Ph specifies this chord as (h1,al,,3). At the nth rota- 
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tional increment, Ph specifies this chord as (h,,,a^,f3n). An infinite number 
of rotational increments are specified by Ph in the angular interval 
[/,/3, + /'], and thus Ph lacks the property of uniqueness. But if we con- 
strain Ph to defining uniquely only a subset of chords, then Ph lacks the 
property of completeness. In other words, Ph maps one-to-one but not 
onto the space. If we introduce the rotational coordinate, then Ph maps 
onto the space, but one-to-c, where c is the power of the continuum. 
Again, Ph must lack either uniqueness or completeness. 

Case (3) involves the fixing of a in order to determine the correspond- 
ing domain of h that meets Bertrand's condition. This case is equivalent 
to considering all a's, as in case (2), only one at a time. Let a assume 
a given value. Then, as figure 6.2c illustrates, the circle is not densely 
packed with chords for the given a. There are two empty sectors of com- 
bined area r2(2a + sinacosa). The neglected area amounts to Trr2 when 
a = ir/2, and amounts to zero when a = 0. For all values of a other 
than zero, infinite numbers of chords with slope a can be drawn in the 
neglected areas. These sectors are empty because all such chords have 
h-coordinates that lie outside the given domain, -r - h - r. 

(Recall that Q2 has a fundamentally different meaning than Q4: It asks 
about random chords generated by means external to the circle. This 
question imposes no finite constraint upon h. Thus, in solving Q2, we 
find no empty sectors for any fixed a.) 

If, by the introduction of a rotational coordinate 8, we attempt to bring 
any such chord into specification under Ph, then we will encounter the 
same problem as in case (2). That is, Ph maps either one-to-one but not 
onto the space, or else maps onto the space but one-to-c, where c is the 
power of the continuum. So Ph lacks either completeness or uniqueness 
when applied to the set of all chords in the circle (note that this failure 
is intrinsic to Ph; i.e., that Ph fails independently of the coordinate system 
in which Ph is expressed). Thus Ph solves Q4, but not Q1 or Q2. Moreover, 
we have seen that B1 and B2 are derived as extrema of Ph. Thus B1 and 
B2 provide correct answers but incorrect solutions to Q1 and Q2, respec- 
tively. 

7. Paradox Lost. There exists a multiplicity, if not an infinite number, 
of procedures for generating random chords of a circle. The answers that 
one finds to Bertrand's generic question Q vary according to the way in 
which the question is interpreted, and depend explicitly upon which geo- 
metric entity or entities are assumed to be uniformly distributed. A final 
example should prove instructive. 

Suppose we adopt the following randomizing procedure: Our highly 
unskilled dart thrower repeatedly lets fly at a rectangle of length 7T and 
height 2. Each dart selects an ordered pair (x,y). The set of ordered pairs 
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(0, 2) (2, 3) d 

(x, y) 

chord 

length 

(0, 0) angle (0, r) a 

Figure 7.1 Randomizer Yielding Uniformly Distributed Chord Lengths. 
Figure 7.1. Randomizer Yielding Uniformly Distributed Chord Lengths. 

on this rectangle maps isomorphically to the set of chords in the unit circle 
as follows (see figure 7.1). Fix any point a on the circumference. Locate 
point b on the circumference by drawing the chord ab at angle x to the 
tangent through a. Now, exactly two chords of length y can be drawn 
from b (except for the unique diameter when y = 2). Produce ab to any 
point c. Draw the chord bd of length y such that, in every case, angle 
cbd is the first of the two possible angles so formed in a counterclockwise 
rotation from be. (Naturally, this procedure also maps isomorphically if, 
in every case, we choose instead the second of the two possible angles.) 
With what probability does this randomly chosen chord bd meet Bertrand's 
condition? 

To solve this problem, look again at the randomizer. Given a uniform 
distribution of darts, the probability that a random chord meets Bertrand's 
condition is the probability that the y-coordinate of a random dart equals 
or exceeds V3; namely, 1 - V\/2 (approximately 0.134). Note that this 
result is independent of the angular variable (the x-coordinate); that is, it 
is generated by the theory of a single uniformly distributed random vari- 
able. 

In effect, this is the solution to the (one-dimensional) orthogonal pro- 
jection of Bertrand's problem. Consider a bob attached to one end of a 
string, whose other end is fixed. Suppose the bob rotates with a constant 
angular velocity. The bob's trajectory, then, describes a circle which lies 
in a plane perpendicular to the axis of rotation. Let the diameter of the 
circle be 2 units. Now consider the orthogonal projection of the bob's 
trajectory: It describes a straight line of length 2. The probability that a 
point "tossed" randomly onto a given interval falls within a given sub- 
interval is the ratio of the respective lengths of the intervals. In this case, 
the quantity 1 - V/2 represents the probability that a point tossed ran- 
domly onto the interval [0,2] falls within the subinterval [V'3,2]. 
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The inclusion of the random angular coordinate allows this solution to 
be reconstituted in two dimensions, although the probability in question 
is independent of the angular coordinate (that is, it remains one- 
dimensional). An appropriate mapping then specifies random chords both 
uniquely and completely, thus ensuring that the set of ordered pairs (x,y) 
is isomorphic with the set of chords in the circle. 

The question is whether this procedure solves Bertrand's problem. The 
answer is that it solves a variation of the problem whose precise wording 
can be discovered by inspecting the randomizer. Clearly, the random vari- 
able that is uniformly distributed on the interval [0,2] represents the chord 
length itself. The mean chord length is 1 unit. The relatively low prob- 
ability obtained in this solution, compared with higher probabilities in 
other solutions, is a reflection of the low mean chord length generated 
by this randomizer, which in turn depends upon the shape of the overall 
distribution of random chord lengths. 

In sum, the foregoing solution solves the following problem, which we 
label Q5: With what probability does a random chord of a circle fulfill 
Bertrand's condition if we require that the chord length be uniformly dis- 
tributed? 

Let us inspect the randomizers used in solving Q,, Q2 and Q3, refor- 
mulating those questions with similar precision. In Q,, two random vari- 
ables representing endpoints of a chord are uniformly distributed, each 
in an interval of [0,27r]. I conducted a computer simulation of ten thou- 
sand trials of darts thrown randomly at Douglas's square. By randomly 
selecting two numbers (the angular coordinates of the endpoints of the 
random chord) on the interval [0,2'r], I computed the length of the re- 
sultant chord (L) as a function of the angle (0) subtended at the center: 
L = 2sin(0/2), where 0 -< T. This procedure yields a nonuniform dis- 
tribution of chord length (see the histogram in figure 7.2). The shape of 
the distribution appears uniform at the lower end of the spectrum, but 
becomes exponential at the high end. The mean chord length is 1.26 units 
(in the unit circle). 

In Q2, recall that a chord is formed by a straight line through a point 
p at a random distance h from the center where h is uniformly distributed 
on the projection of the diameter between the circumference and some 
arbitrary remote limiting point. The straight line forms a random angle 
?a/2 to the produced diameter through p where -+a/2 is uniformly dis- 
tributed in the angular interval [-/3/2,,3/2]. The value of / is determined 
by h. That is, tan(/3/2) = 1/h, and if h is sufficiently large, then tan(/3/2) 

13/2. Thus, for large enough h (e.g., for h > 100), /3 ~ 2/h. The 

length L of a random chord is a function of the distance z of its midpoint 
from the center where tan(la/2|) = z/h. Again, for large h, tan(la/2|) : 
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number of chords in 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

length of random chord by range 

Q3: p = 1/4 E Q1:p = 1/3 E : p = 112 
mean length = 1.33 mean length = 1.26 mean length = 1.57 

Figure 7.2. Nonuniform Distributions of Random Chords (based on 10,000 computer trials). 

la/2|. Owing to circular symmetry, we need only consider positive a; 
thus, z x ha/2 where a/2 E [0,3/2]. 

So, for a given h, the distance of the midpoint of a random chord from 
the center is a linear function of the random angle. In consequence, if a 
is uniformly distributed in the interval [-/3/2,,/2], which we demand, 
then z is also uniformly distributed in the interval [-1,1]. The corre- 
sponding chord length L = 2(1 - z2) . Taking h to be uniformly dis- 
tributed on [1,104], (that is, on the interval between the circumference 
and an arbitrary remote limiting point 104 radii distant from the center), 
a computer simulation of ten thousand random trials yields a nonuniform 
distribution of chord length (see figure 7.2). In this case the shape of the 
distribution appears purely exponential. The mean chord length is 1.57 
units. 

In Q3, we require that randomly selected points in a circle (the mid- 
points of chords) be uniformly distributed with respect to area. Imagine 
the unit circle partitioned into n concentric rings, each of equal area Tr/n. 
The radius of the first ring is (l/n)'12; of the second, (2/n)'/2; of the kth 
ring, (k/n)'/2. The mean radius r is given by 

r = l/n k= 1 ~kn 2/3 (for n = 105). 
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However, the mean chord length is not a function of the mean radius 
since the values of the radii are not uniformly distributed in the interval 
[0,1]. Rather, the areas of concentric rings are uniformly distributed in 
the interval [0,7rr2], where r E [0,11]. 

To simulate this distribution, let the computer select a random area A 
in the unit circle (i.e., A E [0,Tr]), then find the associated radius r = 

(A/Tr)'12. The length of the associated chord is L = 2(1 - r2)'2. The dis- 
tribution can also be simulated by randomly selecting Cartesian coordi- 
nates (x,y) such that x E [0,1] and y E [0,1], subject to the constraint 
x2 + y2 < 1 (which ensures that the random point falls within the circle). 
Every random point represents the midpoint of a random chord at a dis- 
tance r = (x2 + y2)l/2 from the center. The length of such a chord is L = 

2[1 - (x2 + y2)]1/2. After ten thousand random trials, either method yields 
the same nonuniform but apparently linear distribution of chord length 
(see figure 7.2), with a mean chord length of 1.33 units. 

In sum, Q1, Q2 and Q3 can now be reformulated in the clearest possible 
terms. With what probability is Bertrand's condition fulfilled if we re- 
quire (Q1) that the randomly selected endpoints of chords be uniformly 
distributed on the circumference? (Q2) that both (i) a randomly selected 
point outside the circle be uniformly distributed on the projection of the 
diameter between the circumference and some remote limiting point; and 
(ii) a randomly selected angle be uniformly distributed in the angular in- 
terval defined by the two tangents to the circle from the above randomly 
selected point? and (Q3) that the randomly selected points in the circle 
be uniformly distributed within a series of concentric rings of equal area? 

The salient findings for Q, through Q5 are summarized in table 7.1. 
Specific requirements of different questions entail uniform distributions 
of random variables representing different geometric entities. In conse- 
quence, differing but respectively consistent answers ensue. It would surely 
be paradoxical only if the different solutions gave rise to the same answer. 

To dispute which of these questions-if any-"best" represents 
Bertrand's generic question Q is to relinquish geometry for aesthetics. 
Although the randomizer in Q1 may be deemed elegant, and that in Q5 
contrived, this distinction is arguably one of degree, not of kind. Each 
version of Q is so precisely because it foists a specific requirement, or 
set of requirements, upon the problem. While the escape from paradox 
lies in distinguishing between and among such requirements, it does not 
thereby provide a relative measure of appropriateness. It seems unlikely 
that a majority of mathematicians or philosophers would support the claim 
that any particular demand is the most "natural" one to impose on the 
problem. Given that a randomizer is isomorphic with chords of the circle, 
and that the associated random variables are uniformly distributed, then 
the decision to toss straws or throw darts, as well as the choice of target 
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TABLE 7.1. COMPARISON OF SOLUTIONS 

Geometric Entity(ies) 
Randomized: 

two points on the 
circumference 

point on projected 
diameter, & sub- 
angle between its 
tangents 

angle between chord 
and tangent to a 
fixed point 

position of chord 
intersecting fixed 
diameter at right 
angle 

position of point in 
circle 

intersection & angle 
of chord with 
respect to fixed 
diameter 

position and length of 
chord 

Distribution 
Uniform on: 

[0,2rr] x [0,27r] 

[1,d] x [-1,1] 
where d > 1 

[0,7r] 

[-1,1] 

[-1,1] x [-1,1] 

[-1,1] x [0,7r] 

[0,7r] x [0,2] 

(whether real or virtual), remains grounded in subjectivity. In this light, 
Poincare's, Jaynes's and van Fraassen's appeals to invariance of proba- 
bility density under the group of transformations in the Euclidean plane 
as the supreme arbiter of Bertrand's question merely suggest another ver- 
sion of Q: With what probability is Bertrand's condition fulfilled if we 
demand such invariance? (In that case, the answer is 1/2.) Bertrand him- 
self made no such demand; the "paradox" arose precisely because he 
made no demands at all. 

Significantly, the many versions of Bertrand's problem are solvable, 
and each solution relies upon the very procedure-namely, the consistent 
application of the principle of indifference to infinite sets-that Bertrand 
proscribed. Bertrand's former paradox of random chords is resolved by 
the expedient of providing what he, from the outset, withheld, namely, 
a "sufficient specification" of such sets. This and other apparent para- 
doxes arise, not out of nature, rather from want of reason (see also Marinoff 
1993). To paraphrase the Bard: "There is nothing paradoxical, but think- 
ing makes it so". 

APPENDIX 

It remains to locate some competing and contradictory claims, culled from the literature 
on the problem, within the framework of this resolution. 

Version of Q: 

Q1 

Q2 

Q, B, 

Q, B2 

Q3, B3 

Q4 

Q5 

Mean Length 
of Chord (L) 

1.26 

1.57 

1.28 

1.57 

1.33 

1.81 

Probability 
that L > 3 

1/3 

1/2 

1/3 

1/2 

1/4 

3/4 

1.00 I - V/3/2 
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(a) Borel (1909, 110-113) asserted that "the majority of conceivable natural procedures" 
leads to the answer 1/2. 

Response: Natural procedures lead to the answer 1/2 if we are answering Q2. Equally, 
natural procedures lead to other answers if we are answering other questions. 

(b) Poincard (1912) proved that, with regard to representations of straight lines on a 
Euclidean plane, the only differential element that remains invariant under the group of 
translations and rotations is that which corresponds to the probability density yielding the 
answer 1/2 to Q2 (cited by Kendall and Moran 1963, 16). 

Response: This reinforces the argument that 1/2 is the correct answer to Q2. 
(c) Gnedenko (1962, 40-41) asserted that Bertrand's three different results "would be 

appropriate" in three different experiments, but Gnedenko does not describe such exper- 
iments. 

Response: We have herein described three experiments to which Bertrand's three dif- 
ferent results apply. 

(d) Kendall and Moran (1963, 10) affirmed that "all three solutions are correct, but they 
refer to different problems". They do not articulate the problems. 

Response: The three different problems are Ql, Q2 and Q3. 
(e) Uspensky (1937, 251) averred that "we are really dealing with two different prob- 

lems". He poses Q, and argues that B, and B2 answer different questions. 
Response: Uspensky correctly asserts that a mechanism of random choice must be clearly 

specified when randomizing a given geometric entity (ibid.). But his analysis of Bertrand's 
problem remains superficial. 

(f) Northrop (1944, 181-183) simply threw up his hands and gave out that "one guess 
is as good as another". 

Response: One guess is at least as uninformed as another. 
(g) Weaver (1963, 356-357) merely cautioned that "you have to watch your step". 
Response: I have endeavored to watch not only my step, but also the steps (and missteps) 

of others who trod here before me. 
(h) Van Fraassen (1989, 298-317) argues that putative inconsistencies in the wake of 

the principle of indifference can often be obviated by appropriate reformulation of the given 
problem, careful consideration of the symmetries involved, and subsequent employment 
of the proper transformation group. On that basis, he accepts Q2 (Jaynes's mistranslation 
of Q) and excludes other variations. Van Fraassen concludes on a pessimistic note (in a 
section subtitled "Pyrrhic Victory and Ultimate Defeat"), claiming that the principle of 
indifference is not a universal guarantor of consistent a priori predictions, "[D]ifferent 
models of the same situation could fairly bring us diverse answers" (p. 317). 

Response: On the whole, van Fraassen's treatment of the general issue is laudable, but 
his acceptance of Jaynes's treatment of Bertrand's problem incorporates Jaynes's errors of 
translation and interpretation. This resolution shows that the principle of indifference may 
consistently "bring us diverse answers" to Bertrand's question. 

(i) Von Mises (1964, 159-166) takes issue with the principle of indifference in similar 
applications, including another of Bertrand's problems as well as the Buffon needle prob- 
lem. Von Mises denies that such problems can be treated coherently by the received prob- 
ability calculus. 

Response: The principle seems perfectly consistent with respect to Buffon's problem 
and Bertrand's problem (among others). We find complete correspondence between clas- 
sical probabilistic predictions and empirical limiting frequencies. 

(j) Keynes (1921, 63) concludes, "So long as we are careful to enunciate the alternatives 
in a form to which the Principle of Indifference can be applied unambiguously, we shall 
be prevented from confusing together distinct problems, and shall be able to reach con- 
clusions in geometrical probability which are unambiguously valid". 

Response: This study has endeavored to follow Keynes's positivistic prescription. Care- 
ful enunciations of alternatives, unambiguous applications of the principle of indifference, 
and clear demarcation between distinct problems together lead to conclusions in geometric 
probability that are self-consistent and therefore unparadoxical. 
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